Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

NA

Cho hàm số f(x) xác định và liên tục trên [0;1], thỏa mãn f'(x)=f'(1-x) với mọi x thuộc [0;1]. Biết rằng f(0)=1; f(1)=41. Tính tích phân I=\(\int_0^1f\left(x\right)dx\)

NL
4 tháng 3 2022 lúc 17:18

\(f'\left(x\right)=f'\left(1-x\right)\Rightarrow\int f'\left(x\right)dx=\int f'\left(1-x\right)dx\)

\(\Rightarrow f\left(x\right)=-f\left(1-x\right)+C\Rightarrow f\left(x\right)+f\left(1-x\right)=C\)

Thay \(x=0\Rightarrow f\left(0\right)+f\left(1\right)=C\Rightarrow C=42\)

\(\Rightarrow\int\limits^1_0\left[f\left(x\right)+f\left(1-x\right)\right]dx=\int\limits^1_042dx=42\)

Xét \(I=\int\limits^1_0f\left(1-x\right)dx\)

Đặt \(1-x=u\Rightarrow dx=-du;\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^0_1f\left(u\right).\left(-du\right)=\int\limits^1_0f\left(u\right).du=\int\limits^1_0f\left(x\right)dx\)

\(\Rightarrow2\int\limits^1_0f\left(x\right)dx=42\Rightarrow\int\limits^1_0f\left(x\right)dx=21\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
HD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết