Cho hàm số f(x) xác định và liên tục trên [0;1], thỏa mãn f'(x)=f'(1-x) với mọi x thuộc [0;1]. Biết rằng f(0)=1; f(1)=41. Tính tích phân I=\(\int_0^1f\left(x\right)dx\)
cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
cho hàm số y=f(x) liên tục trên [0;π/2] thỏa \(\int_0^{\frac{\pi}{2}}f^2\left(x\right)dx=3\pi\) , \(\int_0^{\pi}\left(\sin x-x\right)f'\left(\frac{x}{2}\right)dx=6\pi\) ; \(f\left(\frac{\pi}{2}\right)=0\) Tính \(\int_0^{\frac{\pi}{2}}\left(f''\left(x\right)\right)^3dx\)
giúp em với ạ.
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên đoạn [1;2] thoả mãn \(f\left(1\right)=2\) và \(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2xf^2\left(x\right)\), ∀x ϵ [1;2]. Giá trị của \(\int_1^2f\left(x\right)dx\) bằng
A. \(1+\ln2\) B. \(1-\ln2\) C. \(\dfrac{1}{2}-\ln2\) D. \(\dfrac{1}{2}+\ln2\)
Cho \(\int_0^4f\left(x\right)dx=2018\)Giá trị \(\int_0^2f\left(2x\right)dx+\int_{-2}^2\text{}f\left(2-x\right)dx\)bằng
A. 4036
B. 3027
C. 0
D. -1009
Cho hàm số \(y=f\left(x\right)\) liên tục trên đoạn \(\left[-1;3\right]\) thoả mãn \(\int\limits^1_0f\left(x\right)dx=3\) và \(\int\limits^3_1f\left(x\right)dx=6\) . Tính \(\int\limits^3_{-1}f\left(\left|x\right|\right)dx\)
Cho hàm số y=f(x) liên tục trên [0;+\(\infty\)] và \(\int_0^{x^2}f\left(t\right)dt=x.sin\pi x\). Tính f(4)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm và liên tục trên \(\left[0;\dfrac{\pi}{2}\right]\)thoả mãn \(f\left(x\right)=f'\left(x\right)-2cosx\). Biết \(f\left(\dfrac{\pi}{2}\right)=1\), tính giá trị \(f\left(\dfrac{\pi}{3}\right)\)
A. \(\dfrac{\sqrt{3}+1}{2}\) B. \(\dfrac{\sqrt{3}-1}{2}\) C. \(\dfrac{1-\sqrt{3}}{2}\) D. 0
Tìm \(\int_0^1\dfrac{x^2e^x}{\left(x+1\right)^2}dx\)