§3. Hàm số bậc hai

PT
Cho hàm số: f(x) = ax^2 + bx + c, biết f(x^2 - 2) = f^2(x) - 2. Chứng minh f(x) là hàm số chẵn
AH
11 tháng 11 2017 lúc 1:05

Lời giải:

Ta có:

\(f(x^2-2)=f^2(x)-2\)

\(\Leftrightarrow a(x^2-2)^2+b(x^2-2)+c=(ax^2+bx+c)^2-2\)

\(\Leftrightarrow ax^4+x^2(-4a+b)+4a-2b+c=a^2x^4+2abx^3+x^2(b^2+2ac)+2bcx+c^2-2\)

Đồng nhất hệ số:

\(\left\{\begin{matrix} a=a^2(1)\\ 2ab=0(2)\\ -4a+b=b^2+2ac(3)\\ 2bc=0(4)\\ 4a-2b+c=c^2-2(5)\end{matrix}\right.\)

\((1)\Rightarrow a=0\) hoặc \(a=1\)

\(\bullet \)Nếu \(a=1\) thì từ (2) suy ra \(b=0\)

\(f(x)=ax^2+c\)\(\Rightarrow f(-x)=a(-x)^2+c=ax^2+c\)

\(\Leftrightarrow f(x)=f(-x)\) nên hàm là hàm chẵn. (đpcm)

\(\bullet \) \(a=0\)

Từ (3) suy ra \(b^2=b\) nên $b=0$ hoặc $b=1$

Nếu \(b=1\rightarrow \) từ (4) suy ra $c=0$. Thử lại vào (5) thấy thỏa mãn

Vậy \(f(x)=x\), đây không phải hàm chẵn, bài toán chưa chính xác.

Bình luận (1)

Các câu hỏi tương tự
HT
Xem chi tiết
NH
Xem chi tiết
TH
Xem chi tiết
HT
Xem chi tiết
BT
Xem chi tiết
LP
Xem chi tiết
MM
Xem chi tiết
NY
Xem chi tiết
NP
Xem chi tiết