Bài 34. Ba trường hợp đồng dạng của hai tam giác

QL

Cho hai tam giác ABC và A'B'C' có \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)

a) Nếu A′B=AB thì hai tam giác có đồng dạng với nhau không? Vì sao?

b) Nếu A′B

- Hãy giải thích vì sao ΔAMN ∽ ΔABC

- Hãy chứng tỏ rằng AN=A’C’′, MN=B′C′ để suy ra ΔAMN = ΔA'B'C' (c.c.c)

- Hai tam giác A'B'C' và ABC có đồng dạng với nhau không? Nếu có, em hãy viết đúng kí hiệu đồng dạng giữa chúng.

c) Nếu A'B' > AB thì tam giác A'B'C' có đồng dạng với tam giác ABC không? Vì sao?

HM
10 tháng 9 2023 lúc 1:11

a)  Nếu A′B′=AB thì tam giác có đồng dạng.

Vì A′B′=AB \( \Rightarrow \)A’C’=AC => B’C’=BC => \(\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\)

=> Hai tam giác đồng dạng

b) MN // BC ( M∈AB, N∈AC) => ΔAMN ∽ ΔABC 

=> \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)

Mà \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)

=> \(\frac{{A'B'}}{{AM}} = \frac{{A'C'}}{{AN}} = \frac{{B'C'}}{{MN}}\)

- Có AM= A’B’ => A’C’=AN \( \Rightarrow \) B’C’=MN 

=>  ΔAMN = ΔA'B'C'

=>  ΔAMN ∽ ΔA'B'C'

Mà ΔAMN ∽ ΔABC 

=> ΔABC ∽ ΔA′B′C′ 

c) Nếu A'B' > AB thì tam giác A'B'C' có đồng dạng với tam giác ABC. Vì \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết