Giả thiết ⇒ \(x^2+y^2+1-2xy-2x+2y=\)\(7-2y\)
⇒\(\left(x-y-1\right)^2=7-2y\) (1)
Vế trái của (1) ≥ 0 nên \(7-2y\ge0\) ⇒ \(y\le\frac{7}{2}\)
GTLN của y là \(\frac{7}{2}\) ; khi đó cả hai vế bằng 0
⇒ \(x-\frac{7}{2}-1=0\) ⇒ \(x=\frac{9}{2}\)
Đúng 0
Bình luận (0)