Violympic toán 9

TN
Cho hai số x, y thỏa mãn x x2+y2 – 2xy – 2x + 4y – 7 = 0 . Tìm giá trị của x khi y đạt giá trị lớn nhất
VH
14 tháng 6 2019 lúc 18:56

Giả thiết ⇒ \(x^2+y^2+1-2xy-2x+2y=\)\(7-2y\)

\(\left(x-y-1\right)^2=7-2y\) (1)

Vế trái của (1) ≥ 0 nên \(7-2y\ge0\)\(y\le\frac{7}{2}\)

GTLN của y là \(\frac{7}{2}\) ; khi đó cả hai vế bằng 0

\(x-\frac{7}{2}-1=0\)\(x=\frac{9}{2}\)

Bình luận (0)