Cho hai nguồn sóng kết hợp\(O_1O_2\), đồng pha trên bề mặt chất lỏng đặt cách nhau 12.8cm. Sóng do hai nguồn phát ra có bước sóng \(\lambda=4cm\), biên độ tại điểm có cực đại giao thoa là \(A_0=2cm\). Hỏi trên đoạn thẳng \(O_1O_2\)có bao nhiêu điểm dao động với biên độ \(A=1.2cm\)?
A.2.
B.4.
C.1.
D.3.
Biên độ sóng tại một điểm M bất kì cách nguồn O1, O2 lần lượt các đoạn d1, d2 là
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}+\frac{\triangle\varphi}{2\pi})|\)
\(\triangle\varphi = 0\)
Biên độ tại điểm có cực đại giao thoa \(A_{Mmax} = A_0=> 2a =2cm.\)
Để biên độ sóng tại M
\(A_M = 1,2 cm=> |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = 1,2\)
=> \(\cos \pi(\frac{d_2-d_1}{\lambda})= 0,6.\)
\(=> \pi.(\frac{d_2-d_1}{\lambda}) = \frac{53}{180}.\pi+k2\pi\)
=> \(d_2-d_1 = (2k + 0,29)\lambda\ \ (1).\)
M nằm trên đoạn thẳng \(O_1O_2\) tức là (không được tính hai nguồn)
\(-O_1O_2 < d_2-d_1 < O_1O_2\)
Thay (1) vào ta được
\(-O_1O_2 < (2k+0,29)\lambda < O_1O_2\)
=> \(-1,745 < k < 1,455\)
=> \(k = -1,0,1.\)