Chương I - Căn bậc hai. Căn bậc ba

H24

cho hai hàm số y= 2x-4 (d) và y = -x+4 (d')

a) vẽ đồ thị hai hàm số trên cùng mặt phẳng tọa độ ?

b) Gọi giao điểm của đường thẳng (d) và(d') với trục Oy là N và M , giao điểm của hai đường thẳng là Q.

Xác định tỏa độ điểm Q và tính diện tích tam giác MNQ ? tính các góc của tam giác MNQ?

 

NT
14 tháng 12 2023 lúc 20:35

a:

loading...

b: Tọa độ điểm Q là:

\(\left\{{}\begin{matrix}2x-4=-x+4\\y=-x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=8\\y=-x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=-\dfrac{8}{3}+4=\dfrac{4}{3}\end{matrix}\right.\)

Vậy: \(Q\left(\dfrac{8}{3};\dfrac{4}{3}\right)\)

Tọa độ M là:

\(\left\{{}\begin{matrix}x=0\\y=2x-4=2\cdot0-4=-4\end{matrix}\right.\)

Vậy: M(0;-4)

Tọa độ N là:

\(\left\{{}\begin{matrix}x=0\\y=-x+4=-0+4=4\end{matrix}\right.\)

vậy: N(0;4)

Q(8/3;4/3); M(0;-4); N(0;4)

\(QM=\sqrt{\left(0-\dfrac{8}{3}\right)^2+\left(-4-\dfrac{4}{3}\right)^2}=\dfrac{8\sqrt{5}}{3}\)

\(QN=\sqrt{\left(0-\dfrac{8}{3}\right)^2+\left(4-\dfrac{4}{3}\right)^2}=\dfrac{8\sqrt{2}}{3}\)

\(MN=\sqrt{\left(0-0\right)^2+\left(4+4\right)^2}=8\)

Xét ΔMNQ có 

\(cosMQN=\dfrac{QM^2+QN^2-MN^2}{2\cdot QM\cdot QN}=\dfrac{-1}{\sqrt{10}}\)

=>\(\widehat{MQN}\simeq108^026'\)

\(sinMQN=\sqrt{1-cos^2MQN}=\dfrac{3}{\sqrt{10}}\)

Diện tích tam giác MQN là:

\(S_{MQN}=\dfrac{1}{2}\cdot QM\cdot QN\cdot sinMQN\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{\sqrt{10}}\cdot\dfrac{8\sqrt{5}}{3}\cdot\dfrac{8\sqrt{2}}{3}=\dfrac{32}{3}\)

 

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DN
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết
QY
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
LS
Xem chi tiết