Bài 8: Cộng, trừ đa thức một biến

PN

Cho hai đa thức: P(x)=3x mũ 3-2x+2x mũ 2+7x+8-x mũ 4 Q(x)=2x mũ 2-3x mũ 3+3x mũ 2-5x+5x mũ 4 a.Thu gọn,sắp xếp theo luỹ thừa giảm dần của của biến và tìm bậc của mỗi đơn thức b.Tính R(x)=P(x)+Q(x) c.Chứng tỏ R(x) luôn có giá trị dương với mọi giá trị của biến

H24
3 tháng 4 2022 lúc 10:44

a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)

   \(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)

   \(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)

   \(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)

 

  \(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)

  \(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)

  \(Q\left(x\right)=5x^2-3x^3-5x^4\)

  \(Q\left(x\right)=-5x^4-3x^2+5x^2\)

b)

\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)

\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)

\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)

Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)

\(=5x+7x^2+4+4-6x^4\)

\(=\) \((12x-4)^2+4\ge4-6x^4\)

Câu c MIK KHÔNG CHẮC LÀ ĐÚNG 

Bình luận (0)