Gọi tia đói của Ax là Ax'
a)
Ta có
\(\widehat{xBz}=\widehat{xAy}=50^0\) ( Hai góc đồng vj ; Bz // Ay )
b)
\(\widehat{BAy}=\widehat{x'Bz}\)( đồng vị )
Mặt khác
\(\widehat{A1}=\frac{1}{2}.\widehat{BAy}\)
\(\widehat{B1}=\frac{1}{2}.\widehat{x'Bz}\)
\(\Rightarrow\widehat{A1}=\widehat{B1}\)
MÀ \(\widehat{A1};\widehat{B1}\) đồng vị
=> Am//Bn
a) vì Bz//Ay → góc xBz = góc xAy ( hai góc đồng vị)
Mà góc xAy = 50 ( gt) → xBz = 50
b) Vì AM là tia phân giác của góc xAy → xAM = 1/2 xAy →xAM = 25 (1)
Vì BN là tia pg của góc xBz → góc xBN = 1/2 xBz → xBN = 25 (2)
Từ (1) và (2) suy ra xAM = xBN =25
Mà chúng ở vị trí đồng vị → AM // BN ( dấu hiệu nhận biết hai đg thẳng song song)
Tha khải : Câu hỏi của Kaneki Ken - Toán lớp 7 | Học trực tuyến