Bài 1: Cho đường tròn (O;3) và điểm M,N sao cho OM=2 căn 2 và ON=3. Xác định vị trí của điểm M và N với (O).
Bài 2:Cho đường tròn (O) và a nằm trên đường tròn. vẽ góc xAy=90độ và Ax, Ay cắt đường tròn tại B và C, biết AB=6, AC=8. tính bán kính đường tròn (O)
Cho đường tròn (O;R) có đường kính AB. Vẽ tiếp tuyến Ax, lấy M bất kì thuộc tia Ax, MB cắt đường tròn (O) tại C.
a) Chứng minh AC vuông góc với MB.
b) Tính BC.BM theo R.
c) Vẽ dây AD vuông góc với OM tại H. Chứng minh MD2 = MC.MB.
Các cậu giúp mình với, mình cảm ơn nhiều ạ ! (Vẽ hình giúp mình với ~ . ~)
Cho nửa đường tròn tâm O, đường kính AB. Kẻ tia Ax vuông góc với AB ( tia Ax và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB. Lấy một điểm C bất kì thuộc nửa đường tròn ( C khác A và B). Qua O kẻ một đường thẳng song song với BC cắt tia Ax tại M và cắt AC tại F. a, Tính MB biết BC = 5 , AC = 8 b, D là giao MB và (O) cmr ∆MFD ~ ∆MBO
cho đoạn thẳng ab trên cùng 1 nửa mặt phẳng có bờ là đường thẳng ab vẽ hai tia ax và by lần lượt vuông góc với ab tại a và b gọi trung điểm của ab là o trên ax lấy điểm c trên by lấy điểm d sao cho góc COD bằng 90 độ
Cho nửa đường tròn tâm O , đường kính AB=2R , M là một điểm tùy ý nửa đường tròn ( M khác A;B ) . Kẻ hai tia tuyến Ax và By với đường tròn .Qua M kẻ tia tuyến thứ ba lần lượt cắt Ax và B tại C và D .
a, Chứng minh : CD =AC +BD và góc COD =90 độ.
b, Chứng minh : AC BD=R^2
C,OC cắt AM tại E ,OD cắt BM tại F . Chứng minh : EF=R
cho đoạn thẳng ab trên cùng một nửa mặt phẳng ab vẽ hai tia ã, by cùng vuông góc với ab gọi o là trung điểm ab trên tia ã by lần lượt lấy hai điểm C và D bất kỳ sao cho COD = 90 chứng minh Cd là tiếp tuyến của hai đường tròn đường kính AB tìm vị trí của C D để diện tích tứ giác ABDC nhỏ nhất và tính diện tích ấy theo AB = a
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp
Cho điểm C thuộc đoạn thẳng AB (C ≠ A, B). Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax, By vuông góc với AB. Trên tia Ax lấy một điểm I khác A, vẽ đường tròn đường kính IC. Tiếp tuyến tại C của đường tròn này cắt tia By tại K, IK cắt đường tròn tại P.a) Chứng minh 4 điểm C, P, K, B cùng thuộc một đường tròn.b) Chứng minh rằng: AI.BK = AC.BC.c) Cho A, B, I cố định. Tìm vị trí điểm C để diện tích tứ giác ABKI đạt giá trị lớn nhất.
). Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C cố định sao cho ; AC AB CB cắt (O) tại D (D khác B). Qua trung điểm E của AC dựng đường thẳng vuông góc với AC cắt BC tại F. 1) Chứng minh bốn điểm A, D, E, F cùng nằm trên một đường tròn. 2) Gọi M là một điểm bất kì trên cung lớn BD của (O) (M khác B và D). Chứng minh: . BMD OFD 3) Giả sử đường tròn nội tiếp tam giác AED có độ dài đường kính bằng độ dài đoạn OA. Tính giá trị của ACAB. 4) Gọi P là điểm thay đổi trên đoạn thẳng AC, đường thẳng BP cắt (O) tại N. Hỏi khi P di chuyển trên AC thì tâm đường tròn ngoại tiếp tam giác CPN chạy trên đường nào?