Sửa đề 1 chút
Cho góc AOB , vẽ tia OC nằm giữa hai tia OA và OB . Gọi OD ; OE lần lượt là các tia phân giác của góc AOC và góc BOC
a. Tính tỉ số góc DOE và góc AOB
b. Tìm giá trị lớn nhất của góc DOE
Giải :
Ta có : góc DOC = \(\dfrac{AOC}{2}\)( Do OD là tia phân giác của góc AOC )
góc EOC = \(\dfrac{BOC}{2}\)( Do OE là tia phân của góc BOC)
Cộng cả hai vế ta được :
góc DOC + góc EOC = \(\dfrac{AOC}{2}+\dfrac{BOC}{2}=\dfrac{AOC+BOC}{2}=\dfrac{AOB}{2}=DOE\)
Vậy \(\dfrac{AOB}{2}=DOE\)
Do đó : \(\dfrac{DOE}{AOB}=\dfrac{1}{2}\)
Tỉ số của hai góc đó là \(\dfrac{1}{2}\)