Bài 5. Phép chiếu song song

H24

Cho \(G\) là trọng tâm tam giác \(ABC\), \(M\) là trung điểm \(BC\) và hình chiếu song song của tam giác \(ABC\) là tam giác \(A'B'C'\). Chứng minh rằng hình chiếu \(M'\) của \(M\) là trung điểm của \(B'C'\) và hình chiếu \(G'\) của \(G\) cũng là trọng tâm tam giác \(A'B'C'\).

HM
22 tháng 9 2023 lúc 12:47

Vì phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó nên có \(M\) nằm giữa \(B\) và \(C\) thì \(M'\) nằm giữa \(B'\) và \(C'\).

Vì phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau nên có \(MB = MC\) thì \(M'B' = M'C'\).

Vậy \(M'\) là trung điểm của \(B'C'\).

Vì phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó nên có \(G\) nằm giữa \(A\) và \(M\) thì \(G'\) nằm giữa \(A'\) và \(M'\).

Vì phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau nên có \(AG = \frac{2}{3}AM\) thì \(A'G' = \frac{2}{3}A'M'\).

Vậy \(G'\) là trọng tâm tam giác \(A'B'C'\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết