Ôn tập toán 7

HH

cho \(\frac{a}{b}=\frac{c}{d}\)  chứng minh:    \(\frac{\left(a-b\right)^2}{\left(c+d\right)^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\)

NT
26 tháng 9 2016 lúc 21:42

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (1)

\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3.\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3.b^2.k^2+2b^2}{3.d^2.k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3.k^2+2\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\)

Mk có sửa đề chút nhé!

Bình luận (0)

Các câu hỏi tương tự
DG
Xem chi tiết
BN
Xem chi tiết
DA
Xem chi tiết
NU
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết