Ôn tập toán 7

MA

Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)CMR:\(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

TH
18 tháng 1 2017 lúc 17:14

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow k=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\Rightarrow k^3=\left(\frac{a+b+c}{b+c+d}\right)^3\left(1\right)\)

\(k^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

Bình luận (0)
QD
18 tháng 1 2017 lúc 17:22

Ta có:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}\)3=\(\frac{b}{c}\)3=\(\frac{c}{d}\)3=\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\left(\frac{a+b+c}{b+c+d^{ }}\right)\)3

\(\Rightarrow\)\(\left(\frac{a+b+c}{b+c+d^{ }}\right)\)3=\(\frac{a}{b}\).\(\frac{b}{c}\).\(\frac{c}{d}\)=\(\frac{a}{d}\)

\(\Rightarrow\)đpcm

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
NT
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
NB
Xem chi tiết
GF
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết