Ôn tập toán 7

H24

Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0\) và \(c\ne d\).

CMR: \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)

TA
7 tháng 8 2016 lúc 21:23

- Giống giống hằng đẳng thức nhỉ??

Bình luận (0)
KK
25 tháng 1 2017 lúc 19:34

Ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2-2ab+b^2}{c^2-2cd+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(2\right)\)

Từ điều (1) và (2)

\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)

\(\Rightarrow c\left(a+b\right)-d\left(a+b\right)=c\left(a-b\right)+d\left(a-b\right)\)

\(\Rightarrow ac+bc-ad-bd=ac-bc+ad-bd\)

\(\Rightarrow bc-ad=-bc+ad\)

\(\Rightarrow2bc=2ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\left[\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{b}{a}=\frac{d}{c}\end{matrix}\right.\) ( đpcm )

đề sai phải là CMR \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{b}{a}=\frac{d}{c}\)

Bình luận (1)

Các câu hỏi tương tự
NC
Xem chi tiết
VH
Xem chi tiết
LH
Xem chi tiết
HL
Xem chi tiết
DL
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
DG
Xem chi tiết