Violympic toán 9

H24

Cho \(\frac{1}{a}+\frac{1}{b}=1\) CMR: \(\sqrt{a-1}+\sqrt{b-1}=\sqrt{a+b}\)

SG
25 tháng 10 2019 lúc 17:40

Ta có \(\frac{1}{a}+\frac{1}{b}=1\)

\(\frac{a+b}{a\cdot b}=1\)

\(\Leftrightarrow a+b=a\cdot b\)

đặt \(A=\sqrt{a-1}+\sqrt{b-1}\)

\(\Leftrightarrow A^2=\left(\sqrt{a-1}+\sqrt{b-1}\right)^2\)

\(\Leftrightarrow A^2=a+b-2+2\sqrt{\left(a-1\right)\cdot\left(b-1\right)}\)

\(\Leftrightarrow A^2=a+b-2+2\sqrt{a\cdot b-a-b+1}\)

\(\Leftrightarrow A^2=a+b-2+2\sqrt{a+b-a-b+1}\)

\(\Leftrightarrow A^2=a+b-2+2\sqrt{1}\)

\(\Leftrightarrow A^2=a+b-2+2\)

\(\Leftrightarrow A^2=a+b\)

\(\Leftrightarrow A=\sqrt{a+b}\)

\(\Leftrightarrow\sqrt{a-1}+\sqrt{b-1}=\sqrt{a+b}\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa