Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

VD

Cho \(f\left(x\right)=x^2-\left(2m+1\right)x+m^2+1\) (x à biến số, m là tham số).

Tìm tất cả các giá trị của m để đẳng thức \(f\left(x\right)=\left(ax+b\right)^2\) đúng với mọi số thực x; trong đó a, b là các hằng số.

DD
16 tháng 12 2018 lúc 8:41

Để \(f\left(x\right)=\left(ax+b\right)^2\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+m^2+1=\left(ax+b\right)^2\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+\left(m^2+1\right)=a^2x^2+2abx+b^2\)

Đồng nhất hệ số ta được :

\(\left\{{}\begin{matrix}a^2=1\\2ab=-\left(2m+1\right)\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\pm1\\2ab=-2m-1\\b^2=m^2+1\end{matrix}\right.\)

Với \(a=1\Rightarrow\left\{{}\begin{matrix}2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=-\dfrac{5}{4}\end{matrix}\right.\)

Với \(a=-1\Rightarrow\left\{{}\begin{matrix}-2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)

Vậy \(m=\dfrac{3}{4}\)

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
AD
Xem chi tiết
NK
Xem chi tiết
NV
Xem chi tiết