Ta có: \(f=\left(x+1\right)=0\left(x\in R\right)\)\(\Leftrightarrow\left(x+1\right)^2-5\left(x+1\right)+6=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x\in\left\{1;2\right\}\Rightarrow\) A = { 1;2 }
Ta có: f=(x+1)=0(x∈R) f=(x+1)=0(x∈R) ⇔(x+1) 2 −5(x+1)+6=0 ⇔(x+1)2−5(x+1)+6=0
⇔x 2 −3x+2=0 ⇔x2−3x+2=0
⇔x∈{1;2}⇒ ⇔x∈{1;2}⇒ A = { 1;2 }