Ôn thi vào 10

LN

Cho đường tròn (O;R) và dây BC cố định không qua 0. Trên tia đối của tia BC lấy điểm A khác B. Tủ A kẻ các tiếp tuyến AM, AN với đường tròn (M, N là tiếp điểm). 1) Chứng minh bốn điểm A, M, O, N cũng thuộc một đường tròn. 2) MN cắt OA tại H. Chứng minh OAI MN và AH.AO = AB.AC.

H24
16 tháng 4 2021 lúc 20:35

1, Xét $(O)$ có các tiếp tuyến $AM;AN$ 

suy ra $\widehat{AMO}=\widehat{ANO}=90^o;AM=AN;AO$ là phân giác $\widehat{MAN}$

nên $\widehat{AMO}+\widehat{ANO}=180^o$

suy ra tứ giác $AMON$ nội tiếp (tổng 2 góc đối =180 độ)

2, Ta có: $AM=AN⇒ΔAMN$ cân tại $A$
có đường phân giác $AO$
$⇒AO$ đồng thời là đường trung trực tam giác $AMN$

$⇒AO⊥MN$ tại $H$

3. Xét $ΔAMO$ vuông tại $M$

$MH$ là đường cao

Nên $AH.AO=AM^2$ (hệ thức lượng trong tam giác vuông)

Xét $(O)$ có: Tiếp tuyến $AM$

nên $\widehat{AMB}=\widehat{MCB}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $BM$)

hay $\widehat{AMB}=\widehat{ACM}$ 

Xét tam giác $AMB$ và tam giác $ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

Nên  tam giác $AMB$ và tam giác $ACM$ đồng dạng (g.g)

suy ra $\dfrac{AB}{AM}=\dfrac{AM}{AC}$

nên $AM^2=AB.AC$

Từ đó suy ra $AH.AO=AB.AC$

Bình luận (1)

Các câu hỏi tương tự
NA
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
WC
Xem chi tiết
NL
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
MN
Xem chi tiết