từ một điểm A nằm ngoài đường tròn (O;R), kẻ 2 tiếp tuyến AB, AC với (O;R)(B và C là tiếp điểm). Vẽ đường kính BD a) chứng minh AO vuông góc BC tại H và CD song song OA b)AD cắt đường tròn tại K. chứng minh AD.AK=AH.AO
Từ điểm A nằm ngoài đường tròn tâm O vẽ hai tiếp tuyến AB, AC. Kẻ BK vuông góc với AC, BK cắt đường tròn tâm O tại M, AM cắt O tại N. Gọi H là giao điểm giữa OA và BC.
a) Chứng minh bốn điểm O, H, M, N thuộc cùng một đường tròn
b) Kẻ MI vuông góc với BC, MD vuông góc với AB. CHứng minh Tam giác MIK đồng dạng với tam giác MDI
c) Gọi E, F, G lần lượt là giao điểm BM và ID; IK và MC; EF và AB. CHứng minh BG = IF
Từ điểm A ở ngoài đường tròn tâm O, vẽ 2 tiếp tuyến AB và AC với (O) (B và C là các tiếp điểm). OA cắt BC tại H, cắt đường tròn (O) tại 2 điểm I và K (I thuộc cung BC nhỏ, K thuộc cung BC lớn). Vẽ đường kính CD, cát tuyến AD cắt (O) tại M. BM cắt OA tại N
Chứng minh: a) Tứ giác AMHC nội tiếp
b) N là trung điểm của AH
c) 1/AN=1/AI+1/AK
cho M nằm ngoài (O) từ M kẻ 2 tiếp tuyến MA,MB với đường tròn, vẽ cát tuyến MCD không đi qua tâm
a)chứng minh các điểm M,A,O,B cùng thuộc một đường tròn và MO vuông góc với AB tại H
b) chứng minh MA.AD=MD.AC
c) gọi I là trung điểm của CD và E là giao điểm của AB và OI. chứng minh rằng: tứ giác OECH nội tiếp
Cho (O) qua điểm A nằm ngoài đường tròn,kẻ tiếp tuyến AB và AC với đường tròn.(BC là tiếp điểm).Kể đường kính BD,đường thẳng DC cắt BA tại E,AO cắt BC tại H,đường thẳng qua C và vuông góc với BD cắt AD tại K. Chứng minh rằng : a) AO vuông góc với BC b) AB = AE c) HK // BD
Cho (O) qua điểm A nằm ngoài đường tròn,kẻ tiếp tuyến AB và AC với đường tròn.(BC là tiếp điểm).Kể đường kính BD,đường thẳng DC cắt BA tại E,AO cắt BC tại H,đường thẳng qua C và vuông góc với BD cắt AD tại K. Chứng minh rằng AB = AE
Cho (O) qua điểm A nằm ngoài đường tròn,kẻ tiếp tuyến AB và AC với đường tròn.(BC là tiếp điểm).Kể đường kính BD,đường thẳng DC cắt BA tại E,AO cắt BC tại H,đường thẳng qua C và vuông góc với BD cắt AD tại K. Chứng minh rằng AB = AE
Cho (O; 5cm), điểm A nằm ngoài đường tròn sao cho OA = 10cm. Qua A vẽ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua A kẻ cát tuyến không qua O cắt đường tròn (O) tại điểm C và D (C nằm giữa A và D). H là trung điểm của CD. Lấy điểm E đối xứng với B qua OA. Tính chu vi của tứ giác ABOE, ta được kết quả:
Từ điểm M nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến MA và MB đến (O)( A,B là hai tiếp điểm). Gọi MCD là cát tuyến của (O) (C nằm giữa M và D; tia MD nằm trong ∠OMB). Vẽ OE vuông góc với CD tại E.
Chứng minh: tứ giác MAEB nội tiếp đường tròn tâm I, xác định tâm I của đường tròn này.