Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

QL

Cho đường thẳng \(\Delta \): y= ax + b, với\(a \ne 0\) .

a) Chứng minh rằng \(\Delta \) cắt trục hoành.

b) Lập phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \)

c) Hãy chỉ ra mối quan hệ giữa \({\alpha _\Delta }\) và \({\alpha _{{\Delta _o}}}\).

d) Gọi M là giao điểm của \({\Delta _o}\) với nửa đường tròn đơn vị và \({x_o}\) là hoành độ của M. Tính tung độ của M theo \({x_o}\) và a. Từ đó, chứng minh rằng \(\tan {\alpha _\Delta } = a\).

HM
30 tháng 9 2023 lúc 23:52

a) Xét hệ phương trình: \(\left\{ \begin{array}{l}y = 0\\y = ax + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = \frac{{ - b}}{a}\end{array} \right.\) . Vậy đường thẳng \(\Delta \) cắt trục hoành tại điểm \(\left( {\frac{{ - b}}{a};0} \right)\).

b) Phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \) là \(y = a\left( {x - 0} \right) + 0 = {\rm{a}}x\).

c) Ta có: \({\alpha _\Delta } = {\alpha _{{\Delta _o}}}\).

d) Từ câu b) và điều kiện \(x_o^2 + y_o^2 = 1\) trong đó \({y_o}\) là tung độ của điểm M, ta suy ra \({x_o} \ne 0\). Do đó: \(\tan {\alpha _\Delta } = \tan {\alpha _{{\Delta _o}}} = \frac{{{y_o}}}{{{x_o}}} = a\).

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết