Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

cho đường thẳng \(\Delta\) có pt \(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)và M(3;1)

a) Tìm điểm A thuộc Δ sao cho AM=\(\sqrt{13}\)b)Tìm điểm B thuộc  Δ sao cho đoạn MB ngắn nhất

 

NL
5 tháng 3 2021 lúc 18:55

Do A thuộc \(\Delta\) nên tọa độ có dạng \(A\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{AM}=\left(2t+5;-2t\right)\)

\(\Rightarrow AM=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{13}\)

\(\Leftrightarrow8t^2+20t+25=13\)

\(\Leftrightarrow8t^2+20t+12=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{3}{2}\end{matrix}\right.\)

Có 2 điểm A thỏa mãn: \(\left[{}\begin{matrix}A\left(0;-1\right)\\A\left(1;-2\right)\end{matrix}\right.\)

b. Do B thuộc \(\Delta\) nên tọa độ có dạng \(B\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{BM}=\left(2t+5;-2t\right)\)

\(MB=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{8t^2+20t+25}=\sqrt{8\left(t+\dfrac{5}{4}\right)^2+\dfrac{25}{2}}\ge\sqrt{\dfrac{25}{2}}\)

Dấu "=" xảy ra khi \(t+\dfrac{5}{4}=0\Leftrightarrow t=-\dfrac{5}{4}\Rightarrow B\left(\dfrac{1}{2};-\dfrac{3}{2}\right)\)

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
KR
Xem chi tiết
KR
Xem chi tiết
KT
Xem chi tiết
KR
Xem chi tiết
KR
Xem chi tiết
KR
Xem chi tiết
KR
Xem chi tiết
SN
Xem chi tiết