Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

NA

Cho điểm M(1;1) và hai đường thẳng \(\Delta_1,\Delta_2\) lần lượt có phương trình :

\(3x+4y-5=0;4x-3y+4=0\)

Viết phương trình đường thẳng d đi qua M và tạo với  \(\Delta_1,\Delta_2\) một tam giác cân

 
NH
1 tháng 4 2016 lúc 21:58

Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)

Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)

Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)

Do đó nếu đường thẳng d tạo với  \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của  \(\Delta_1;\Delta_2\)

Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng  \(\Delta_1\) một góc \(\frac{\pi}{4}\).

Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :

\(ax+by-a-b=0\)

Do  góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên

\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)

                         \(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)

Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)

Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)

    
Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết