Vẽ BM cắt AC tại D. Vì M nằm trong tam giác ABC nên D nằm giữa A và C, ta có AC = AD + DC
Tam giác ABD có DB < AB + AD, =>
MB + MD < AB + AD (1)
Tam giác MDC có MC < DC + MD
Công (1) và (2) theo từng vế, ta được:
MB + MC + MD < AB + AD + DC + MD
=> MB + MC < AB + ( AD + DC )
=> MB + MC < AB + AC
Tương tự => MA + MB < AC + BC và MA + MC < AB + BC
=> MB + MC + MA + MB + MA + MC < AB + AC + AC + BC + AB + BC
=> 2(MA + MB +MC)<2(AB + AC + AB)
=> MA + MB + MC < AB + AC + AB (3)
Xét các tam giác MAB, MAC, MBC ta lần lượt có:
MA + MB > AB; MA + MC > AC; MB + MC > BC
=> MA + MB + MA + MC + MB + MC > AB + AC + BC
=> 2( MA + MB + MC) > AB + AC + BC
=> \(MA+MB+MC>\dfrac{AB+AC+BC}{2}\left(4\right)\)
Từ (3) và (4)
\(\Rightarrow\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
le thi hong van nhờ c 1 lần nx nha! ~Mianhae~
Theo bất đẳng thức trong tam giác:
MA+MB>AB
MB+MC>AC
MA+MC>AC
⇒2MA+2MB+2MC>AB+BC+AC
⇒MA+MB+MC>(AB+BC+AC)/2