Violympic toán 7

TL

Cho \(\dfrac{a}{c}=\dfrac{c}{b}\). Chứng minh rằng \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)

ND
31 tháng 12 2017 lúc 10:34

\(\dfrac{a}{c}=\dfrac{c}{b}\\ \Rightarrow ab=c^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}\\ =\dfrac{a\left(a+b\right)}{b\left(a+b\right)}\\ =\dfrac{a}{b}\)

Bình luận (0)
HD
31 tháng 12 2017 lúc 10:51

Đặt \(\dfrac{a}{c}=\dfrac{c}{b}=k\)

\(\Rightarrow a=c.k;c=b.k\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{\left(c.k\right)^2+\left(b.k\right)^2}{b^2+\left(b.k\right)^2}=\dfrac{k^2.\left(c^2+b^2\right)}{b^2.\left(k^2+1\right)}\)

\(=\dfrac{k^2.\left[\left(b.k^2\right)+b^2\right]}{b^2.\left(k^2+1\right)}=\dfrac{k^2.\left[b^2.\left(k^2+1\right)\right]}{b^2.\left(k^2+1\right)}=k^2\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{c.k}{b}=\dfrac{b.k^2}{b}=k^2\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\left(đpcm\right)\)

Bình luận (0)
DT
31 tháng 12 2017 lúc 14:02

Hỏi đáp Toán

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TL
Xem chi tiết
PL
Xem chi tiết
MT
Xem chi tiết
DX
Xem chi tiết
HD
Xem chi tiết
JV
Xem chi tiết
MM
Xem chi tiết
MM
Xem chi tiết