Violympic toán 7

MT

a) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (\(a,b,c,d\ne0\)). Chứng minh rằng:

1) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

2) \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

3) \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\) \(\left(\dfrac{a}{b}=\dfrac{c}{d}\ne1\right)\)

b)Cho \(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\). Chứng minh rằng:\(\dfrac{a}{b}=\dfrac{c}{d}\)

c)Cho \(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\). Chứng minh rằng: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

AH
20 tháng 11 2018 lúc 18:13

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

Bình luận (0)
AH
20 tháng 11 2018 lúc 18:15

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

Bình luận (0)
AH
20 tháng 11 2018 lúc 18:31

Bài 3:

a) Sửa điều kiện: \(\frac{a}{b}=\frac{c}{d}\neq -1\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Theo đkđb thì \(k\neq -1\) nên \(k^3+1\neq 0\); \(k+1\neq 0\)

Ta có: \(\frac{a^3+b^3}{c^3+d^3}=\frac{(bk)^3+b^3}{(dk)^3+d^3}=\frac{b^3(k^3+1)}{d^3(k^3+1)}=\frac{b^3}{d^3}\)

\(\frac{(a+b)^3}{(c+d)^3}=\frac{(bk+b)^3}{(dk+d)^3}=\frac{b^3(k+1)^3}{d^3(k+1)^3}=\frac{b^3}{d^3}\)

\(\Rightarrow \frac{a^3+b^3}{c^3+d^3}=\frac{(a+b)^3}{(c+d)^3}\) (đpcm)

b)

Đặt \(\frac{a}{b}=k; \frac{c}{d}=t\Rightarrow a=bk; c=dt\)

Ta cần cm \(k=t\)

Khi đó:

\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b(2k+13)}{b(3k-7)}=\frac{2k+13}{3k-7}\)

\(\frac{2c+13d}{3c-7d}=\frac{2dt+13d}{3dt-7d}=\frac{d(2t+13)}{d(3t-7)}=\frac{2t+13}{3t-7}\)

\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\Rightarrow \frac{2k+13}{3k-7}=\frac{2t+13}{3t-7}\)

\(\Rightarrow (2k+13)(3t-7)=(2t+13)(3k-7)\)

\(-14k+39t=-14t+39k\Rightarrow k=t\)

Ta có đpcm.

Bình luận (0)
AH
20 tháng 11 2018 lúc 18:45

Bài 3c:

Ta có:

\(\frac{cy-bz}{x}=\frac{az-cx}{y}=\frac{bx-ay}{z}\)

\(= \frac{xcy-xbz}{x^2}=\frac{yaz-ycx}{y^2}=\frac{zbx-zay}{z^2}\)

\(=\frac{xcy-xbz+yaz-ycx+zbx-zay}{x^2+y^2+z^2}=\frac{0}{x^2+y^2+z^2}=0\) (áp dụng tính chất dãy tỉ số bằng nhau)

\(\Rightarrow \left\{\begin{matrix} cy-bz=0\\ az-cx=0\\ bx-ay=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{c}{z}=\frac{b}{y}\\ \frac{a}{x}=\frac{c}{z}\\ \frac{a}{x}=\frac{b}{y}\end{matrix}\right.\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
DH
Xem chi tiết
LS
Xem chi tiết
N2
Xem chi tiết
NN
Xem chi tiết
MN
Xem chi tiết
TK
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết