Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

VN

Cho \(\Delta ABC\)cân tại A \(\left(\widehat{A}< 90^0\right)\);các đường cao BD; CE cắt nhau tại H.

a) Chứng minh: \(\Delta ABD=\Delta ACE\).

b) Chứng minh: \(\Delta BHC\)là tam giác cân.

c) So sánh HB và HD.

d) Trên tia đối của tia EH lấy điểm N sao cho NH < HC. Trên tia đối của tia DH láy ddiemr M sao cho MH = NH. Chứng minh các đường thẳng BN; AH; CM đồng quy.

LV
29 tháng 5 2018 lúc 10:13

Xin lỗi bạn nhé, câu cuối, mik chưa chắc chắn lắm đâu!

a, Xét \(\Delta ABDvà\Delta ACEcó:\\ \left\{{}\begin{matrix}\widehat{BDA}=\widehat{CEA}\left(=90^0\right)\\\widehat{BAC}làgócchung\\AB=AC\left(gt\right)\end{matrix}\right.\\ \Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)

b, Theo câu a , ta có :

\(\widehat{ABD}=\widehat{ACE}\left(haigóctươngứng\right)\)

Lại có ;\(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

\(\Rightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\\ \Rightarrow\Delta BHCcântạiH\)

c, Xét tam giác vuông DHC ta có :

HC > HD ( do HC là cạnh huyền )

Mà HC = HB ( tam giác BHC cân tại H )

\(\Rightarrow HB>HD\)

d, Gọi giao điểm của BN và CM là I.

Ta có ; \(HB=HC;MH=NH\Rightarrow HB+HM=HC+HN\\ \Leftrightarrow BM=CN\)

\(Xét\Delta BCMvà\Delta CBNcó:\\ \left\{{}\begin{matrix}BM=CN\left(cmt\right)\\\widehat{MBC}=\widehat{NCB}\left(cmt\right)\\BClàcạnhchung\end{matrix}\right.\\ \Rightarrow\Delta BCM=\Delta CBN\left(c-g-c\right)\\ \Rightarrow\widehat{NBC}=\widehat{MCB}\left(haigóctươngứng\right)\\ \Rightarrow\Delta BICcântạiI\)

Ta có :\(\left\{{}\begin{matrix}AB=AC\\HB=HC\end{matrix}\right.\\ \Rightarrow A,HthuộcđườngtrungtrựccủaBC\\ \Rightarrow AHlàđườngtrungtrựccủaBC\)

Vì IB = IC nên I cũng thuộc đường trung trực của BC

\(\Rightarrow I\in AH\)

\(I\in IB;I\in IC\)

\(\Rightarrow BN,AH,CMđồngquy\)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
GR
Xem chi tiết
DB
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
PT
Xem chi tiết
MD
Xem chi tiết