Tam giác đồng dạng

DD

Cho \(\Delta ABC\) vuông tại A, đường cao AH, I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ AC vẽ tia Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH,AE với BI lần lượt là G,K. CMR:

a, \(\Delta IHE\sim\Delta BHA\)

b, \(\Delta BHI\sim\Delta AHE\)

c, AE\(\perp\)BI

TK
12 tháng 3 2020 lúc 18:55

\(\Delta BHA\sim\Delta AHC\left(1\right):\widehat{AHB}=\widehat{AHC}=90,\widehat{ABH}=\widehat{HAC}\) ( cộng với góc BAH đều =90)

\(\Delta AHC\sim\Delta ICE\left(2\right):\widehat{AHC}=\widehat{ICE}=90,\widehat{HAC}=\widehat{CIE}\) ( so le trong, EI//AH cùng vuông góc BC)

Ta có IF vuông góc BC và HI=IC suy ra IE là đ/trung trực HC suy ra : \(\Delta ICE=\Delta IHE\left(IC=IH,HE=CE,chungIE\right)\left(3\right)\)

Từ (1),(2) và (3) suy ra ĐPCM

b/Từ (1) và ĐPCM ở câu a suy ra \(\Delta BHA\sim\Delta IHE\)( bắc cầu)

\(\Rightarrow\frac{BH}{HI}=\frac{AH}{HE}\Leftrightarrow\frac{BH}{AH}=\frac{HI}{HE}\)

Ta xét tgiac BHI và AHE có

\(\widehat{AHE}=\widehat{BHI}\)( đều =\(\widehat{AHI}+\widehat{AHB}=\widehat{AHI}+\widehat{IHE}=\widehat{AHI}+90\))

\(\frac{BH}{AH}=\frac{HI}{HE}\)

Suy ra ĐPCM

c/

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
NK
Xem chi tiết
LD
Xem chi tiết
HD
Xem chi tiết
KB
Xem chi tiết