Cho ba điểm A,B,C. Mệnh đề nào sau đây đúng?
A. AB+BC=AC
B. \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=0\)
C. \(\overrightarrow{AB}-\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|-\left|\overrightarrow{BC}\right|\)
D. \(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\)
Ai có giải giúp mình câu này không:
Cho 6 điểm A, B, C, D, E, F. CMR:
\(a.\overrightarrow{CD}+\overrightarrow{FA}-\overrightarrow{BA}-\overrightarrow{ED}+\overrightarrow{BC}-\overrightarrow{FE}=\overrightarrow{0}\)
\(b.\overrightarrow{AD}-\overrightarrow{FC}-\overrightarrow{EB}=\overrightarrow{CD}-\overrightarrow{EA}-\overrightarrow{FB}\)
\(c.\overrightarrow{AB}-\overrightarrow{DC}-\overrightarrow{FE}=\overrightarrow{CF}-\overrightarrow{DA}+\overrightarrow{EB}\)
Cho tam giác ABC, Gọi M, N, P lần lượt là trung điểm của AB, BC, CA. Chứng minh rằng :
a, \(\overrightarrow{\text{Ạ}N}=\overrightarrow{AM}+\overrightarrow{AP}\)
b, \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng :
a) \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
b) \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Cho tam giác ABC có O là trung điểm AC, E và F thuộc AC sao cho O là trung điểm EF. C/m \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{BF}\)
cho lục giác đều ABCDEF có tâm O . chứng minh rằng :
a, \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}=\overrightarrow{O}\)
b, \(\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OE}=\overrightarrow{O}\)
c, \(\overrightarrow{AB}+\overrightarrow{AO}+\overrightarrow{AF}=\overrightarrow{AD}\)
d, \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\) (M tùy ý )
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC, điểm K nằm trên đoạn MN sao cho \(\overrightarrow{KM}=-2\overrightarrow{KN}\). Tính \(\overrightarrow{AK}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
cho tam giác ABC đều, cạnh bằng 1. phát biểu nào đúng ? ( giải thích dùm mình)
a> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=\sqrt{3}\)
b> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=0\)
c> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\)
d> \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=0\)
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CD. CMR:
a. \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AC}\)
b. \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{AP}+\overrightarrow{BM}=\overrightarrow{MC}\)
c.\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
d. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP},\forall0\)