a: \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔMBC có
HB là hình chiếu của MB trên BC
HC là hình chiếu của MC trên BC
mà HB<HC
nên MB<MC
a: \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔMBC có
HB là hình chiếu của MB trên BC
HC là hình chiếu của MC trên BC
mà HB<HC
nên MB<MC
Cho ΔABC vuông tại A có AB =3cm AC =4cm, kẻ đường cao AH (H ∈ BC)
a) Tính BC.
b) So sánh \(\widehat{B}\) và \(\widehat{C}\); HB và HC.
Help me câu b).
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
Ai giúp em câu c và d vs ạ :(((
cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
1.Cho \(\Delta ABC\) vuông tại A có đường p/giác \(\widehat{ABC}\) cắt AC tại E kẻ \(EH\perp BC\) tại H\(\left(H\in BC\right)\)
C/m: a)\(\Delta ABE=\Delta HBE\)
b)BE là trung trực AH
c)EC > AE
2.Cho \(\Delta ABC\) vuông tại A đường cao AH. Trên cạnh BC lấy D sao cho BD=BA
a)C/m:\(\widehat{BAD}=\widehat{BDA}\)
b)C/m:\(\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)
Từ đó suy ra: AD là tia p/giác \(\widehat{HAC}\)
c)Vẽ \(DK\perp AC\) .C/m:AK=AH
d)C/m:AB+AC < BC+AH
3.Cho \(\Delta ABC\) vuông tại A đường cao AH . Biết AH=4 cm; HB=2 cm; HC=8 cm
a)Tính AB; AC
b)C/m:\(\widehat{B}>\widehat{C}\)
Cho tam giác ABC cân tại A có A=60 độ. Vẽ đường cao AH ( H thuộc BC). Từ B kẻ BM thuộc AB cắt AH tại M. Nối MC
a, CM : góc ACM=90 độ
b, BH=HC
c,cho AB=6cm. tính AH,BM
Cho \(\Delta ABC\) có AB < AC, kẻ \(AH\perp BC\)
a) So sánh HB và HC
b) Lấy M trên AH. So sánh MB và MC
c) So sánh \(\widehat{BAH}\) và \(\widehat{CAH}\)
Cho tam giác ABC, \(\widehat{A}\)= 90 độ, \(\widehat{B}\)= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho BH=HD
a) Chứng minh tam giác ABD đều.
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh \(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)