Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

LH

Cho dãy số (un) xác định bởi :  u1=1 ,\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{n^2+3n+2}\right)\) 

Tìm công thức số hạng tổng quát un   theo n

NL
9 tháng 8 2021 lúc 16:28

\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}+\dfrac{2}{n+2}\right)\)

\(\Leftrightarrow u_{n+1}-\dfrac{3}{n+1+1}=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}\right)\)

Đặt \(u_n-\dfrac{3}{n+1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{3}{2}=-\dfrac{1}{2}\\v_{n+1}=\dfrac{3}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(\dfrac{3}{2}\)

\(\Rightarrow v_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}\)

\(\Rightarrow u_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}+\dfrac{3}{n+1}\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
MT
Xem chi tiết
VP
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết