Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

1L

cho dãy số (un) \(\left\{{}\begin{matrix}u_1=\dfrac{1}{3}\\u_{n+1}=\dfrac{n+1}{3n}.u_n,n\ge1\end{matrix}\right.\)tính tổng S=\(\sum_{k=1}^{10}\)\(\dfrac{u_k}{k}\)?

NL
24 tháng 4 2021 lúc 22:39

\(\Leftrightarrow\dfrac{u_{n+1}}{n+1}=\dfrac{1}{3}.\dfrac{u_n}{n}\)

Đặt \(\dfrac{u_n}{n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{3}\\v_{n+1}=\dfrac{1}{3}v_n\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội \(\dfrac{1}{3}\)

\(\Rightarrow v_n=\dfrac{1}{3}.\left(\dfrac{1}{3}\right)^{n-1}=\left(\dfrac{1}{3}\right)^n\)

\(S=\sum\limits^{10}_{k=1}\left(\dfrac{1}{3}\right)^k=\dfrac{\dfrac{1}{3}\left(1-\dfrac{1}{3^{10}}\right)}{1-\dfrac{1}{3}}=\dfrac{1}{2}\left(1-\dfrac{1}{3^{10}}\right)\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
VP
Xem chi tiết
KR
Xem chi tiết
KR
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết