Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

TT

Cho dãy số \(u_n\) thỏa mãn: \(\left\{{}\begin{matrix}u_1=2018\\u_{n+1}=\dfrac{u_n}{\sqrt{1+u_n^2}}\end{matrix}\right.\). Tìm giá trị nhỏ nhất của n để \(u_n< \dfrac{1}{2018}\)

NL
7 tháng 1 2021 lúc 16:15

\(u_{n+1}^2=\dfrac{u_n^2}{1+u_n^2}\Rightarrow\dfrac{1}{u_{n+1}^2}=\dfrac{1}{u_n^2}+1\)

Đặt \(\dfrac{1}{u_n^2}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{2018^2}\\v_{n+1}=v_n+1\end{matrix}\right.\)

\(v_n\) là cấp số cộng với công sai d=1 \(\Rightarrow v_n=\dfrac{1}{2018^2}+n-1\)

\(\Rightarrow u_n^2=\dfrac{1}{v_n}=\dfrac{1}{n+\dfrac{1}{2018^2}-1}\)

\(u_n^2< \dfrac{1}{2018^2}\Rightarrow\dfrac{1}{n+\dfrac{1}{2018^2}-1}< \dfrac{1}{2018^2}\Rightarrow n...\)

Bình luận (0)