Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}\)
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
Cho tam giác ABC có AB<AC, D nằm giữa A và C sao cho: \(\widehat{ABD}=\widehat{ACB}\). Phân giác của góc A cắt BC tại E, BD tại F. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CM: MB.EC=MC.EB
cho tam giác ABC đường cao AH
a) c/m : △ABC đồng dạng với △HBA
b) gọi M ,N lần lượt là trung điểm của AB và BC .đường thẳng d vuông vs BC tại D cắt MN tại I .c/m :IB2 =IM . IN
c) gọi E là giao điểm của IC và EH .c/m : E là trung điểm của AH
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}=90\) độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
cho tm giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho \(\Delta\)ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD
b)Gọi I là giao điểm của BD và AH. Chứng minh:\(\Delta\)AID cân
c) Qua I kẻ đường thẳng song song với AC cắt BC tại K.Chứng minh:\(\dfrac{HK}{KC}\)=\(\dfrac{HB}{AB}\)
d)Gọi E là giao điểm của AK và I,F là trung điểm của AC.Chứng minh:H,E,F thẳng hàng