Gọi H1, H2, H3 lần lượt là trực tâm ΔABC1, ΔBCA1, ΔCAB1
Ta có: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}_1=\overrightarrow{OH_1}\)(1)
\(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OA_1}=\overrightarrow{OH_2}\)(2)
\(\overrightarrow{OC}+\overrightarrow{OA}+\overrightarrow{OB_1}=\overrightarrow{OH_3}\) (3)
Trừ theo vế (1), (2) ta có:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC'}+\overrightarrow{BO}+\overrightarrow{CO}+\overrightarrow{A_1O}=\overrightarrow{OH_1}+\overrightarrow{H_2O}\)
\(\Leftrightarrow\overrightarrow{A_1A}+\overrightarrow{CC_1}=\overrightarrow{H_2H_1}\)
trương tự trừ theo vế (2), (3) ta được:
\(\overrightarrow{B_1B}+\overrightarrow{AA_1}=\overrightarrow{H_3H_2}\)
Lại có: AA1//BB1//CC1 (gt)
=> vt AA1, vtA1A, vt B1B, CC1 cùng phương
=> đpcm