cho tam giác ABC, D là một điểm trên cạnh BC. Qua D kẻ đường thẳng song song với AB cắt AC ở E. Trên cạnh AB lấy điểm F sao cho AF=DE. Gọi I là trung điểm của AD. Chứng minh:
a) DF=AE
b) E và F đối xứng với nhau qua điểm I
Cho tam giác ABC có điểm M nằm trong tam giác. Gọi I, J, K lần lượt là giao điểm của AM, BM, CM với các cạnh của tam giác. Đường thẳng qua M và song song với BC cắt IK, IJ theo thứ tự tại E và F. Chứng minh: ME=MF
Cho tam giác ABC vuông tại A có đường cao AH, biết AB=15, AC= 20cm.
a) Tính BC, AH.
b) Trên đonạ HC lấy D sao cho HD=HB. Tính tan góc ADH và chứng minh: HD.HC=HA^2
c) Trên tia AH lấy điểm E sao cho H là trung điểm của AE. Đường thẳng ED cắt AC tại F. Gọi O là trung điểm của CD. Chứng minh HF vuông góc FO.
d) Đoạn HF cắt AD tại S. Tia CS cắt AH tại K và cắt AB tại M. Chứng minh: AB/AM +AD/AS = AE/AK
Cho hình vuông ABCD. Gọi E là một điểm nằm trên cạnh BC. Qua E kẻ tia Ax vuông góc với AE, tia Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G.
Cho hình vuông ABCD. Gọi E là một điểm nằm trên cạnh BC. Qua E kẻ tia Ax vuông góc với AE, tia Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G.
Mọi người vẽ hình dùm nha!!!!
Cho tam giác ABC vuông tại A (Ab > AC), đường cao AH(H thuộc BC), Trên tia đối của tia CB lấy điểm M sao cho HM=HA. Qua điểm M kẻ đường thẳng vuông góc với MB cắt đường thẳng AB tại N. Gọi P là trung điêmr của CN. Tia AP cắt đường thẳng BC tại Q. Chứng minh: a) Tam giác NCB đồng dạng tam giác MAB
Cho đường tròn O bán kính R, dây BC khác đường kính, qua O kẻ đường vuông góc với BC tại I cắt tiếp tuyến tại B của đường tròn, tại điểm A ve đường kính BD
a, CM: CD song song với OA
b, CM: AC là tiếp tuyến của đường tròn O
c, Đường thẳng vuông góc với BD tại O cắt BC tại K. CM: IK.IC + OI.IA = R2
Cho tam giác ABC vuông tại A có AB = c cm, AC = b cm. Vẽ tia Bx cắt cạnh AC tại E( E nằm giữa A và C). Trên tia Ex lấy điểm F thõa mãn \(\frac{c^2}{BE^2}+\frac{b^2}{BF^2}=1\).CM CF song song AB
BÀI 2: Cho \(\Delta\) ABC vuông tại A, \(kẻ\) đường thẳng song song BC cắt các cạnh góc vuông AB và AC tại M và N. biết MB=12 cm; NC = 9cm. Gọi E và F lần lượt là trung điểm của MN và BC.
a. chứng minh 3 điểm A ; E; F thẳng hàng
b.Gọi G là trung điểm của BN. Giải \(\Delta\) AFG
c. chứng minh: EF . AC = EG. AB
~ giải chi tiết giúp mình với ^.^ ~