Hình học lớp 7

NT

Cho ΔABC có AB=AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC; E thuộc AB) Gọi O là giao điểm của BD và CE. Chứng minh

a)BD=CE

b)ΔOEB=ΔODC

C)AO là tia phân giác của góc BAC

TH
11 tháng 12 2016 lúc 19:56

Ta có hình vẽ:

A B C D E O

a/ Xét tam giác BEC và tam giác CDB có:

\(\widehat{BEC}\)=\(\widehat{CDB}\)=900 (GT)

BC: cạnh chung

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác BEC = tam giác CDB

(theo trường hợp cạnh huyền góc nhọn)

=> BD = CE (2 cạnh tương ứng)

b/ Ta có: BE = CD (vì tam giác BEC = tam giác CDB) (1)

\(\widehat{E}\)=\(\widehat{D}\) = 900 (2)

Ta có: \(\widehat{EOB}\)=\(\widehat{DOC}\) (đối đỉnh) (*)

\(\widehat{E}\)=\(\widehat{D}\)=900 (**)

Mà tổng 3 góc trong tam giác bằng 1800 (***)

Từ (*),(**),(***) => \(\widehat{EBO}\)=\(\widehat{DCO}\) (3)

Từ (1),(2),(3) => tam giác OEB = tam giác ODC

c/ Xét tam giác AEO và tam giác ADO có:

AO: cạnh chung

\(\begin{cases}AB=AC\left(GT\right)\\EB=DC\end{cases}\)\(\Rightarrow\)AE = AD

EO = DO (vì tam giác OEB = tam giác ODC)

Vậy tam giác AEO = tam giác ADO (c.c.c)

=> \(\widehat{EAO}\)=\(\widehat{DAO}\) (2 góc tương ứng)

=> AO là tia phân giác \(\widehat{BAC}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
TG
Xem chi tiết
DQ
Xem chi tiết
HK
Xem chi tiết
EC
Xem chi tiết
HK
Xem chi tiết