Chương II : Tam giác

PD

Cho ΔABC cân tại A (∠A < 90 độ ) , đường cao BD và CE cắt nhau tại H
a) Chứng minh : ΔABD = ΔACE
b) Chứng minh : ΔAED cân
c) Chứng minh : AH là trung trực của ED
d) Trên tia đối của DB lấy điểm K sao cho DK=DB . Chứng minh : ∠ECB=∠DKC

NT
16 tháng 8 2022 lúc 20:49

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc A chung

Do đó: ΔABD=ΔACE

b: Xét ΔADE có AD=AE

nên ΔADE cân tại A

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

AD=AE

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

mà AD=AE

nên AH là đường trung trực của ED

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
ME
Xem chi tiết
CV
Xem chi tiết
MN
Xem chi tiết
WR
Xem chi tiết
H24
Xem chi tiết