a) \(P\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
\(P\left(x\right)=\left(2x^4-x^4\right)+\left(5x^3-x^3-4x^3\right)+\left(3x^2-x^2\right)+1\)\
\(P\left(x\right)=x^4+2x^2+1\)
b) \(P\left(1\right)=1^4+2.1^2+1=1+2+1=4\)
\(P\left(-2\right)=\left(-2\right)^4+2\left(-2\right)^2+1=16+8+1=25\)
c) Đặt \(P\left(x\right)=x^4+2x^2+1=0\Rightarrow x^4+2x^2=-1\)
Mà \(x^4;2x^2\ge0\forall x\Rightarrow x^4+2x^2\ge0\Rightarrow x^4+2x^2\ne-1\)
Suy ra P(x) vô nghiệm