a, Thu gọn và sắp xếp theo lũy thừa giảm dần của biến :
* \(F_{\left(x\right)}=5x^2-1+3x+x^2-5x^3\)
\(=-5x^3+6x^2+3x-1\)
* \(G_{\left(x\right)}=2-3x^3+6x^2+5x-2x^3-x\)
\(=-5x^3+6x^2+4x+2\)
b, Ta có :
* \(M_{\left(x\right)}=F_{\left(x\right)}-G_{\left(x\right)}\)
\(\Rightarrow M_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)-\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)
\(=-x-3\).
* \(N_{\left(x\right)}=F_{\left(x\right)}+G_{\left(x\right)}\)
\(\Rightarrow N_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)+\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)
\(=-10x^3+12x^2+7x+1\).
c, Để tìm nghiệm của đa thức \(M_{\left(x\right)}\) ta đặt \(M_{\left(x\right)}=0\) vào \(M_{\left(x\right)}=-x-3\) thì ta được :
\(-x-3=0\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\)
Vậy nghiệm của đa thức \(M_{\left(x\right)}\) là \(x=-3\).
b)M(x)=F(x)-G(x)
F(x)-G(x)=(-5x3 -6x2 + 3x - 1) - (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 - 5x3 - 6x2 - 4x - 2
=(-5x3 - 5x3) + (-6x2 - 6x2) + (3x - 4x) + (-1 - 2)
=-10x3 - 12x2 - 1x - 3
Vậy M(x)=-10x3 - 12x2 - 1x - 3
N(x)=F(x)+G(x)=(-5x3 - 6x2 + 3x - 1) + (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 + (-5x3) + 6x2 + 4x + 2
=-5x3 + (-5x3) + (-6x2 + 6x2) + (3x + 4x) + (-1 + 2)
=-10x3 + x2 + 7x + 1
-Chúc bạn học tốt nhaaa
2:
a)F(x)=5x2 - 1 + 3x + x2 - 5x3
=-5x3 + (5x2 + x2) + 3x - 1
=-5x3 + 6x2 + 3x - 1
G(x)=2 - 3x3 + 6x2 + 5x - 2x3 - x
=(-3x3 - 2x3) + 6x2 + (5x - x) + 2
=-5x3 + 6x2 + 4x + 2
a, F(x)=5x2 -1 +3x +x2 -5x3
=(5x2 +x2)-1+3x-5x3
=6x2 -1 +3x -5x3
Sắp xếp F(x): -5x3+6x2 +3x -1
G(x)=2-3x3 +6x2 +5x -2x3-x
=2+(-3x3-2x3)+6x2 +(5x-x)
=2 -5x3 +6x2 + 4x
Sắp xếp G(x): -5x3+6x2 +4x+2