Violympic toán 7

QM

Cho đa thức Q(x)= -3x^4+4x^3+2x^2+2/3-3x-2x^4-4x^3+8x^4+1+3x
a) rút gọn và sắp xếp theo lũy thừa giảm dần của biến
b) chứng tỏ Q(x) không có nghiệm

H24
3 tháng 5 2023 lúc 11:23

a,

 \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(-3x+3x\right)+\left(\dfrac{2}{3}+1\right)\\ =3x^4+0+2x^2+0+\dfrac{5}{3}\\ =3x^4+2x^2+\dfrac{5}{3}\)

b, Ta có

\(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\\ \Rightarrow3x^4+2x^2\ge0\\ \Rightarrow3x^4+2x^2+\dfrac{5}{3}\ge\dfrac{5}{3}>0\)

\(\Rightarrow Q\left(x\right)\) lớn hẳn hơn 0

\(\Rightarrow Q\left(x\right)\) vô nghiệm 

Bình luận (0)

Các câu hỏi tương tự
BV
Xem chi tiết
XX
Xem chi tiết
HD
Xem chi tiết
KH
Xem chi tiết
LG
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
LT
Xem chi tiết
ZZ
Xem chi tiết