Violympic toán 7

TM

Bài 1: a) Chứng tỏ rằng đa thức \(f\left(x\right)=3x^3+4x^2+2x+1\) có một trong các nghiệm bằng -1

b) Chứng tỏ rằng đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) có một trong các nghiệm bằng -1 nếu a+c=b+d

AH
1 tháng 4 2019 lúc 0:39

Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$

a) Theo đề bài:

\(f(x)=3x^3+4x^2+2x+1\)

\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)

Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)

b)

\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :

\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)

\(\Leftrightarrow -a+b-c+d=0\)

\(\Leftrightarrow a+c=b+d\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
KH
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
CG
Xem chi tiết
DD
Xem chi tiết
TV
Xem chi tiết