Cho các số tự nhiên \(a_1,a_2...a_{2016}\) có tổng bằng \(2016^{2017}\)
Chứng minh \(a^{3_{_1}}+a^{3_{_2}}+...+a^{3_{_{2016}}}⋮3\)
a) Chứng minh rằng với mọi số nguyên x,y thì :
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) là số chính phương
b) Cho \(a_1,a_2,...,a_{2016}\) là các số tự nhiên có tổng chia hết cho 3.
Chứng minh rằng : \(A=a_1^3+a_2^3+a_3^3+...+a_{2016}^3\) chia hết cho 3.
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
Giả sử 2015 số nguyên dương \(a_1,a_2,a_3,...,a_{2015}\) thoả mãn:
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}=1008\)
Chứng minh rằng có ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau.
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(B=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}+\frac{1}{2017}\)
Tính \(\left(A-B\right)^{2016^{2017}}\)
a) Tìm các góc \(1\Delta\) . Biết các góc tỉ lệ với 2;3;4
b) Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh \(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{\left(a-b\right)^{2016}}{\left(c-d\right)^{2016}}\)
cho a,b,c>0 thõa mãn abc=1. CM \(\frac{1}{a^{2016}+b^{2016}+1}+\frac{1}{b^{2016}+c^{2016}+1}+\frac{1}{c^{2016}+a^{2016}+1}\le1\)
Some body good at toán jup tui
Cho:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\) và a+b+c=2016
Cmr
Trong a;b;c có 1 số = 2016
a^2016+b^2016+c^2016=a^1008. b^1008+b^1008. c^1008+c^1008. a^1008.
Tính A=(a-b)^3+(b-c)^4+(c-a)^2015