Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

KR

Cho các số thực dương a,b,c,m,n,p thỏa mãn \(2.\sqrt[2017]{m}+2.\sqrt[2017]{n}+3.\sqrt[2017]{p}\le7\) và \(4a+4b+3c\ge42\). Đặt \(S=\dfrac{2\left(2a\right)^{2018}}{m}+\dfrac{2\left(2b\right)^{2018}}{n}+\dfrac{3c^{2018}}{p}\). KĐ đúng

A. 42<S<\(7.6^{2018}\)   B.\(S>6^{2018}\)  C. \(7\le S\le7.6^{2018}\)   D.\(4\le S\le42\)

HP
19 tháng 1 2021 lúc 18:25

Áp dụng BĐT Cosi cho 2018 số:

\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)

\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)

\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)

Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)

\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)

\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)

\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)

Vậy \(S>6^{2018}\)

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
H24
Xem chi tiết
UK
Xem chi tiết
CW
Xem chi tiết
KR
Xem chi tiết
PV
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết