Violympic toán 9

TV

Cho các số thực dương a,b,c thỏa mãn abc=1.CMR: \(\frac{ab}{a^4+b^4+1}+\frac{ac}{a^4+c^4+1}+\frac{bc}{b^4+c^4+1}\le1\)

DD
5 tháng 6 2019 lúc 12:43

Trước hết ta cần chứng minh BĐT :

\(a^4+b^4\ge ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^4-a^3b+b^3-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\) ( đúng )

Áp dụng BĐT trên vào bài toán ta có :

\(\sum\frac{ab}{a^4+b^4+1}\le\sum\frac{ab}{ab\left(a^2+b^2\right)+abc}=\sum\frac{1}{a^2+b^2+c}\le\sum\frac{1}{2ab+\frac{1}{ab}}\le\sum\frac{1}{2\sqrt{ab.\frac{1}{ab}}+ab}=\sum\frac{1}{2+1}=1\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
IC
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
NS
Xem chi tiết
AJ
Xem chi tiết
ND
Xem chi tiết
AJ
Xem chi tiết