Ôn tập: Phân thức đại số

TS

Cho các số dương x, y thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của

P = \(\left(2x+\dfrac{1}{x}\right)^2\)+ \(\left(2y+\dfrac{1}{y}\right)^2\)

IM
21 tháng 4 2017 lúc 19:55

Khai triển :

\(P=4x^2+4y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+8\)

Vì x,y dương

(+) AM-GM : \(\left\{{}\begin{matrix}4x^2+1\ge4x\\4y^2+1\ge4y\end{matrix}\right.\)

\(\Rightarrow4x^2+4y^2+2\ge4\left(x+y\right)=4\)

(+) AM-GM :\(\left\{{}\begin{matrix}\dfrac{1}{x^2}+4\ge\dfrac{4}{x}\\\dfrac{1}{y^2}+4\ge\dfrac{4}{y}\end{matrix}\right.\)

(+) Hệ quả AM-GM :\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}=4\)

\(\Rightarrow\dfrac{4}{x}+\dfrac{4}{y}\ge\dfrac{16}{x+y}=16\)

\(\Rightarrow4x^2+4y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+10\ge16+4\)

\(\Rightarrow P+2\ge20\)

\(\Rightarrow P\ge18\)

Dấu "=" xảy ra <=> \(x=y=\dfrac{1}{2}\)

Vậy MinP=18 khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
H24
9 tháng 5 2019 lúc 8:46

Có một cách khác đó là biến đổi và dùng cô si trực tiếp vào cái biểu thức trong ngoặc rồi dùng Cauchy-Schwarz dạng Engel cho hai số (hơi phức tạp tí nhưng chắc không sao) -_-":

\(2x+\frac{1}{x}=4x+\frac{1}{x}-2x\ge2\sqrt{4x.\frac{1}{x}}-2x=4-2x\)

Từ đó suy ra \(\left(2x+\frac{1}{x}\right)^2\ge\left(4-2x\right)^2\).Tương tự: \(\left(2y+\frac{1}{y}\right)^2\ge\left(4-2y\right)^2\)

Cộng theo vế suy ra \(P\ge\left(4-2x\right)^2+\left(4-2y\right)^2\ge\frac{\left(4-2x+4-2y\right)^2}{2}\)

\(=\frac{\left[8-2\left(x+y\right)\right]^2}{2}=\frac{6^2}{2}=\frac{36}{2}=18\)

Dấu "=" xảy ra khi x = y = 1/2

Vậy...

Bình luận (0)

Các câu hỏi tương tự
LG
Xem chi tiết
PT
Xem chi tiết
DT
Xem chi tiết
NP
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
QN
Xem chi tiết
HS
Xem chi tiết
H24
Xem chi tiết