Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NT

Cho các số dương a,b,c thỏa mãn a+b+c<= 2 .chứng minh rằng \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}\ge\frac{\sqrt{97}}{2}\)

DW
1 tháng 12 2019 lúc 10:09

bạn viết sai đề rồi nhé đề đúng là căn(b^2+1/c^2) và căn (c^2 + 1/a^2) ở vế trái chứ ?

Áp dụng BĐT Cô - si, ta có :

\(\left(1.a+\frac{9}{4}.\frac{1}{b}\right)^2\le\left(1^2+\frac{81}{16}\right)\left(a^2+\frac{1}{b^2}\right)\)

\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{4}{\sqrt{97}}\left(a+\frac{9}{4b}\right)\).Chứng minh tương tự, ta có:

\(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{4}{\sqrt{97}}\left(b+\frac{9}{4c}\right)\)

\(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{4}{\sqrt{97}}\left(c+\frac{4}{9a}\right)\)

Cộng 3 vế BĐT => đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DK
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
TS
Xem chi tiết
NA
Xem chi tiết
AT
Xem chi tiết
H24
Xem chi tiết
TF
Xem chi tiết
CD
Xem chi tiết