Chương I - Căn bậc hai. Căn bậc ba

TT

Cho các số dương a, b, c, d. Biết \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\ge3\).

Chứng minh rằng : abcd\(\le\dfrac{1}{81}\)

UK
15 tháng 10 2017 lúc 21:55

Từ giả thiết, ta có:

\(\dfrac{1}{1+a}\ge1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}+1-\dfrac{1}{1+d}=\dfrac{b}{1+b}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\ge3\sqrt[3]{\dfrac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{cda}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+c}\ge3\sqrt[3]{\dfrac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\dfrac{1}{1+d}\ge3\sqrt[3]{\dfrac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chứng minh rồi rút gọn ta được:

\(abcd\le\dfrac{1}{81}\left(đpcm\right)\)

Bình luận (0)
TT
15 tháng 10 2017 lúc 21:15

Mỗi vế trừ đi 4

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
NN
Xem chi tiết
LM
Xem chi tiết
DT
Xem chi tiết
NP
Xem chi tiết
QB
Xem chi tiết
HQ
Xem chi tiết
KA
Xem chi tiết
H24
Xem chi tiết