Đại số lớp 7

MR

Cho các số a, b, c, d là các số dương sao cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

NT
5 tháng 11 2016 lúc 21:23

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Bình luận (1)

Các câu hỏi tương tự
EC
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
HB
Xem chi tiết
NV
Xem chi tiết
PT
Xem chi tiết
BT
Xem chi tiết