Đại số lớp 7

EC

Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh:

1/ \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

2/ \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

LF
24 tháng 11 2016 lúc 22:24

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

1)Xét \(VT=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)

Suy ra Đpcm

2)Xét \(VT=\frac{3\left(bk\right)^2+\left(dk\right)^2}{3b^2+d^2}=\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(1\right)\)

Xét \(VP=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ (1) và (2) suy ra Đpcm

 

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
MR
Xem chi tiết
VQ
Xem chi tiết
HT
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết